Dendritic painting is an artistic technique that involves depositing mixtures of ink and rubbing alcohol onto paint spread on a substrate, producing branching, tree-like patterns. Two physicists have now analyzed the underlying fluid dynamics at work to create those intricate shapes and patterns, describing their findings in a new paper published in the Proceedings of the National Academy of Sciences Nexus.
“Painters have often employed fluid mechanics to craft unique compositions,” said co-author Eliot Fried of the Okinawa Institute of Science and Technology (OIST) in Japan. “We have seen it with [Mexican muralist] David Alfaro Siqueiros, Jackson Pollock, and Naoko Tosa, just to name a few. In our laboratory, we reproduce and study artistic techniques, to understand how the characteristics of the fluids influence the final outcome.”
Fried is one of several scientists intrigued by how artists exploit fluid dynamics in their work. For instance, Roberto Zenit, a physicist at the National Autonomous University of Mexico, has been studying the physics of fluids at work in those techniques for several years, concluding that the artists were “intuitive physicists,” using science to create timeless art—including Siqueiros’ “accidental painting” technique.
Read 10 remaining paragraphs | Comments