Since 1979, Arctic ice has shrunk by 1.35 million square miles, a new JPL study found ice loss in Greenland is far worse than previously thought and Antarctic ice is now at the lowest level since records began. The more they melt, the faster the rate of decline for the ice that remains until we’re faced with a series of catastrophes. The most immediate of which is sea level rise which threatens to eradicate whole nations that are situated on low-lying islands. How do we stop such a problem? While we remedy the longer-term issues around fossil fuel consumption, we might have to buy ourselves more time with geoengineering.

The severity of this situation can’t be stressed enough. Professor John Moore of the Arctic Center, University of Lapland, says that we’re long past the point where emissions reductions alone will be effective. “We are faced with this situation where there’s no pathway to 1.5 [degrees] available through mitigation,” he said. “Things like the ice sheets [melting] and other tipping points will happen regardless,” adding that the Earth’s present situation is akin to a patient bleeding out on the operating table, “we are in this situation where we cannot mitigate ourselves out of the shit.”

Moore is one of the figures behind Frozen Arctic, a report produced by the universities of the Arctic and Lapland alongside UN-backed thinktank GRID-Arendal. It’s a rundown of sixty geoengineering projects that could slow down or reverse polar melting. A team of researchers opted to examine every idea, from those already in place to the ones at the fringes of science. “We wanted to be thorough,” said Moore, “because even the craziest idea might have a nugget of gold in there.” Each approach has been given a brief analysis, examining if it’s feasible on a scientific or practical basis, if it would be potentially helpful and how much it would cost. The report even went so far as to look at pykrete, a wacky World War Two initiative to create artificial glaciers for strategic use by mixing sawdust or paper products into ice.

If you’re curious and don’t have a day or two to read the report yourself, you can boil down the approaches to a handful of categories. The first is Solar Radiation Management, i.e. making the polar regions more reflective to bounce away more of the sun’s heat. Second, there’s artificial ice generation to compensate for what has already been lost. Third, enormous engineering work to buttress, isolate and protect the remaining ice — like massive undersea walls that act as a barrier against the seas as they get warmer. Finally, there are measures that nibble at the edges of the problem in terms of effect, but have more viable long-term success, like preventing flora and fauna (and the warmth they radiate) from encroaching on regions meant to remain frozen.

If you’re a climate scientist, the likely most obvious approach is the first, because we’ve seen the positive effects of it before. Albedo is the climate science term to describe how white ice acts as an enormous reflector, bouncing away a lot of the sun’s heat. Ice ages dramatically increase albedo, but there are more recent examples in living memory: In 1991 Mount Pinatubo, a volcano in the Philippines, erupted, spewing an enormous amount of volcanic ash into the atmosphere. (The event also caused a large amount of damage, displaced 200,000 people and claimed the lives of at least 722.) According to NOAA, the ash dumped into the atmosphere helped reflect a lot of solar heat away from the Earth, causing a temporary global cooling effect of roughly 1.5 degrees celsius. The devastation of Pinatubo isn’t desirable, nor was the ozone depletion that it caused, but that cooling effect could be vital to slowing global warming and polar melting.

It’s possible to do this artificially by seeding the clouds with chemicals deposited by an airplane or with ground-based smoke generators, which can also be used to promote rain clouds. This is a tactic already used in China to help make rain for agriculture and to alleviate drought-like conditions. In this context, the clouds would act as a barrier between the sun and the ice caps, bouncing more of that solar radiation away from the Earth’s surface. Unfortunately, there’s a problem with this approach, which is that it’s incredibly expensive and incredibly fussy. The report says it’s only viable when the right clouds are overhead, and the work would require enormous infrastructure to be built nearby. Not to mention that while we have some small shreds of evidence to suggest it might be useful, there’s nothing proven as yet.

And then there are the second order effects when these approaches then spill over into the rest of the global ecosystem. “If you do sunlight reflection methods and you put anything up in the atmosphere, it doesn’t stay where you put it.” That’s the big issue identified by Dr. Phil Williamson, honorary associate professor at the University of East Anglia and a former contributor to the UN’s keystone Intergovernmental Panel on Climate Change reports. His concern is that regional, targeted climate solutions “don’t solve the problem for the whole world,” and that if you’re not tackling climate change on a global scale, then you’re “just accentuating the difference.” With a cold arctic, but rising temperatures elsewhere, you’re climbing aboard a “climate rollercoaster.”

Second in the ranking of hail-mary climate approaches is to build a freezer to both cool down the existing ice and make more. Sadly, many ideas in this area forget that ice sheets are not just big blocks of immovable ice and are, in fact, liable to move. Take the idea of drilling down two miles or so into the ice sheet and pumping out the warm water to cool it down: Thanks to the constantly shifting ice and water, a new site would need to be drilled fairly regularly.

There’s another problem: The report says one project to bore a hole down 2.5km (1.5 miles) burned 450,000 liters of fuel. Not to mention how much energy it would consume to run the heat exchangers or freezers to create fresh ice on such a scale. That's a considerable amount of greenhouse gas pollution for a project meant to undo that exact type of damage. Dumping a layer of artificially-made snow on a mountain may work fine for a ski resort when the powder’s a little thin, but not the whole planet.

As hard as the scientific and engineering battles will be, there’s also the political one that will need addressing. “A lot of people get quasi-religiously upset about putting stuff into the stratosphere,” said Professor John Moore, “you’d think they’d get similarly upset about greenhouse gasses.” One strategy under consideration is to inject sulfur into the atmosphere to replicate the cooling effects observed after major volcanic eruptions. The sulfur would form SO2, creating thick layers of dense cloud to block more heat from reaching the ice. But if you, like me, have a high school-level knowledge of science, that’s a scary prospect given that sulfur dioxide would resolve to sulfuric acid. Given the microscopic quantities involved, there would be little-to-no impact on the natural world. But the image of acid rain pouring down from the clouds means it’d be a hard sell to an uninformed population.

But if there is a reason for concern, it’s that any unintended consequences could pose a problem in the global political space. “It’s almost like declaring war on the rest of the world if [a nation] goes it alone,” says Phil Williamson, “because any damage or alteration to the global climate system, the country that did it is responsible for all future climatic disasters because the weather isn’t the same.”

Of course, Moore knows that the Frozen Arctic report’s conclusions aren’t too optimistic about a quick fix. He feels its conclusions should serve as a wake-up call for the planet. “Nobody is going to scale up something for the entire arctic ocean overnight,” he said, but that this is the time to “find ideas that might be valuable […] and then put resources into finding out if [those ideas] really are useful.” He added that the short turnaround time before a total climate disaster isn’t much of an issue, saying “engineers can pretty much do anything you ask them to if you put enough resources into it.” Because the alternative is to do nothing, and “every day that we choose to do nothing, we accept more of the damages that are coming.”

This article originally appeared on Engadget at https://www.engadget.com/the-ice-caps-are-melting-is-geoengineering-the-solution-150004916.html?src=rss

https://www.engadget.com/the-ice-caps-are-melting-is-geoengineering-the-solution-150004916.html?src=rss


Featured Posts

January 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

About Us

Welcome to encircle News! We are a cutting-edge technology news company that is dedicated to bringing you the latest and greatest in everything tech. From automobiles to drones, software to hardware, we’ve got you covered.

At encircle News, we believe that technology is more than just a tool, it’s a way of life. And we’re here to help you stay on top of all the latest trends and developments in this ever-evolving field. We know that technology is constantly changing, and that can be overwhelming, but we’re here to make it easy for you to keep up.

We’re a team of tech enthusiasts who are passionate about everything tech and love to share our knowledge with others. We believe that technology should be accessible to everyone, and we’re here to make sure it is. Our mission is to provide you with fun, engaging, and informative content that helps you to understand and embrace the latest technologies.

From the newest cars on the road to the latest drones taking to the skies, we’ve got you covered. We also dive deep into the world of software and hardware, bringing you the latest updates on everything from operating systems to processors.

So whether you’re a tech enthusiast, a business professional, or just someone who wants to stay up-to-date on the latest advancements in technology, encircle News is the place for you. Join us on this exciting journey and be a part of shaping the future.

Podcasts

TWiT 1012: Our Best Of 2024 – The Best Moments From TWiT's 2024 This Week in Tech (Audio)

TWiT wishes all listeners and viewers a Happy New Year and peaceful 2025! Padre's CES 2024 haul Cory Doctorow's infamous ensh*ttification term Tesla teases a robotaxi Last in-studio audience for TWiT Padre on the AI priest Google Search gets worse Christina Warren's Rabbit R1 Snowflake and the AT&T breach Crowdstrike's big outag Last in-studio episode before moving out Salt Hank shows off his new cookbook TWiT's 1000th episode brings back old friends The State of X/Twitter under Elon Parenting with TWiT daddies Tech billionaires affecting Trump's transition team Host: Leo Laporte Download or subscribe to This Week in Tech at https://twit.tv/shows/this-week-in-tech Get episodes ad-free with Club TWiT at https://twit.tv/clubtwit
  1. TWiT 1012: Our Best Of 2024 – The Best Moments From TWiT's 2024
  2. TWiT 1011: The Year in Review – A Look at the Top Stories of 2024
  3. TWiT 1010: The Densest State in the US – TikTok Ban, Drones Over Jersey, GM Quits Robotaxis
  4. TWiT 1009: Andy Giveth & Bill Taketh Away – Trump's Tech Titans, Crypto Boom, TikTok's US Ban, Intel CEO Exits
  5. TWiT 1008: Internet Legal – Australia's Social Media Ban for Kids, Smart Home Nightmare, Bluesky's Ascent