, , , , , , ,

Science Launches to Space Station on NASA’s 20th Northrop Grumman Mission

6 Min Read

Science Launches to Space Station on NASA’s 20th Northrop Grumman Mission

Northrop Grumman's Cygnus space freighter is positioned away from the International Space Station in the grips of the Canadarm2 robotic arm prior to its release ending a four-month stay attached to the orbiting lab's Unity module.

iss067e156135 (July 28, 2022) — Northrop Grumman's Cygnus space freighter is positioned away from the International Space Station in the grips of the Canadarm2 robotic arm prior to its release ending a four-month stay attached to the orbiting lab's Unity module.

Credits:
NASA

Tests of a 3D metal printer, semiconductor manufacturing, and thermal protection systems for reentry to Earth’s atmosphere are among the scientific investigation that NASA and international partners are launching to the International Space Station on Northrop Grumman’s 20th commercial resupply services mission. The company’s Cygnus cargo spacecraft is scheduled to launch on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station in Florida by late January.

Read more about some of the research making the journey to the orbiting laboratory:

3D Printing in Space

An investigation from ESA (European Space Agency), Metal 3D Printer tests additive manufacturing or 3D printing of small metal parts in microgravity.

“This investigation provides us with an initial understanding of how such a printer behaves in space,” said Rob Postema of ESA. “A 3D printer can create many shapes, and we plan to print specimens, first to understand how printing in space may differ from printing on Earth and second to see what types of shapes we can print with this technology. In addition, this activity helps show how crew members can work safely and efficiently with printing metal parts in space.”

Results could improve understanding of the functionality, performance, and operations of metal 3D printing in space, as well as the quality, strength, and characteristics of the printed parts. Resupply presents a challenge for future long-duration human missions. Crew members could use 3D printing to create parts for maintenance of equipment on future long-duration spaceflight and on the Moon or Mars, reducing the need to pack spare parts or to predict every tool or object that might be needed, saving time and money at launch.

Advances in metal 3D printing technology also could benefit potential applications on Earth, including manufacturing engines for the automotive, aeronautical, and maritime industries and creating shelters after natural disasters.

A team led by Airbus U.S. Space & Defense and Space SAS under a contract with ESA developed the investigation.

A gloved hand holds a circular metal base with six 3D printed metal posts on it, three that are straight and a few inches long and three that are a bit longer, wider at the base and top and narrowed in the middle like tiny barbells.
Samples produced by the Metal 3D Printer prior to launch to the space station.
ESA

Semiconductor Manufacturing in Microgravity

Manufacturing of Semiconductors and Thin-Film Integrated Coatings (MSTIC) examines how microgravity affects thin films that have a wide range of uses.

“The potential for producing films with superior surface structures and the broad range of applications from energy harvesting to advanced sensor technology are particularly groundbreaking,” said Alex Hayes of Redwire Space, which developed the technology. “This represents a significant leap in space manufacturing and could herald a new era of technological advancements with wide-reaching implications for both space exploration and terrestrial applications.”

This technology could enable autonomous manufacturing to replace the many machines and processes currently used to make a wide range of semiconductors, potentially leading to the development of more efficient and higher-performing electrical devices.

Manufacturing semiconductor devices in microgravity also may improve their quality and reduce the materials, equipment, and labor required. On future long-duration missions, this technology could provide the capability to produce components and devices in space, reducing the need for resupply missions from Earth. The technology also has applications for devices that harvest energy and provide power on Earth.

“While this initial pilot program is designed to compare thin films produced on Earth and in space, the ultimate goal is to expand to producing a diverse range of production areas within the semiconductor field,” Hayes said.

A sturdy silver box larger than a microwave oven has a large panel across the bottom labeled “Vacuum Exhaust Port,” two panels in the upper right labeled ‘Gas Supply Module,” and an inset on the upper left with several connectors. The panels have black handles.
The gas supply modules and production module for Redwire’s MSTIC investigation.
Redwire

Modeling Atmospheric Re-entry

Scientists who conduct research on the space station often return their experiments to Earth for additional analysis and study. But the conditions that spacecraft experience during atmospheric reentry, including extreme heat, can have unintended effects on their contents. Thermal protection systems used to shield spacecraft and their contents are based on numerical models that often lack validation from actual flight, which can lead to significant overestimates in the size of system needed and take up valuable space and mass. Kentucky Re-entry Probe Experiment-2 (KREPE-2), part of an effort to improve thermal protection system technology, uses three capsules outfitted with different heat shield materials and a variety of sensors to obtain data on actual reentry conditions.

“Building on the success of KREPE-1, we have improved the sensors to gather more measurements and improved the communication system to transmit more data,” said principal investigator Alexandre Martin at the University of Kentucky. “We have the opportunity to test several heat shields provided by NASA that have never been tested before, and another manufactured entirely at the University of Kentucky, also a first.”

The capsules can be outfitted for other atmospheric re-entry experiments, supporting improvements in heat shielding for applications on Earth, such as protecting people and structures from wildfires.

Orange fire surrounds a top-shaped capsule plunging toward Earth, with flames streaming out behind it into the blackness of space. A cloud-covered Earth is visible below.
An artist’s rendering of one of the KREPE-2 capsules during re-entry.
A. Martin, P. Rodgers, L. Young, J. Adams, University of Kentucky

Remote Robotic Surgery

Robotic Surgery Tech Demo tests the performance of a small robot that can be remotely controlled from Earth to perform surgical procedures. Researchers plan to compare procedures in microgravity and on Earth to evaluate the effects of microgravity and time delays between space and ground.

The robot uses two “hands” to grasp and cut simulated surgical tissue and provide tension that is used to determine where and how to cut, according to Shane Farritor, chief technology officer at Virtual Incision Corporation, developer of the investigation with the University of Nebraska.

Longer space missions increase the likelihood that crew members may need surgical procedures, whether simple stiches or an emergency appendectomy. Results from this investigation could support development of robotic systems to perform these procedures. In addition, the availability of a surgeon in rural areas of the country declined nearly a third between 2001 and 2019. Miniaturization and the ability to remotely control the robot may help to make surgery available anywhere and anytime. 

NASA has sponsored research on miniature robots for more than 15 years. In 2006, remotely operated robots performed procedures in the underwater NASA’s Extreme Environment Mission Operations (NEEMO) 9 mission. In 2014, a miniature surgical robot performed simulated surgical tasks on the Zero-G parabolic airplane.

The surgical robot during testing on the ground before launch.
Virtual Incision Corporation

Growing Cartilage Tissue in Space

Compartment Cartilage Tissue Construct demonstrates two technologies, Janus Base Nano-Matrix (JBNm) and Janus Base Nanopiece (JBNp). JBNm is an injectable material that provides a scaffold for formation of cartilage in microgravity, which can serve as a model for studying cartilage diseases. JBNp delivers an RNA-based therapy to combat diseases that cause cartilage degeneration.

Cartilage has a limited ability to self-repair and osteoarthritis is a leading cause of disability in older patients on Earth. Microgravity can trigger cartilage degeneration that mimics the progression of aging-related osteoarthritis but happens more quickly, so research in microgravity could lead to faster development of effective therapies. Results from this investigation could advance cartilage regeneration as a treatment for joint damage and diseases on Earth and contribute to development of ways to maintain cartilage health on future missions to the Moon and Mars.

A section of tissue stained a bluish-green stretches across this image. Scattered throughout the tissue are small clumps of cells stained a pinkish-red.
The Janus Base Nano-matrix anchors cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).
University of Connecticut

Melissa Gaskill
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

https://www.nasa.gov/missions/station/iss-research/nasa-science-launches-to-space-station-20th-northrop-grumman-mission/


January 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

About Us

Welcome to encircle News! We are a cutting-edge technology news company that is dedicated to bringing you the latest and greatest in everything tech. From automobiles to drones, software to hardware, we’ve got you covered.

At encircle News, we believe that technology is more than just a tool, it’s a way of life. And we’re here to help you stay on top of all the latest trends and developments in this ever-evolving field. We know that technology is constantly changing, and that can be overwhelming, but we’re here to make it easy for you to keep up.

We’re a team of tech enthusiasts who are passionate about everything tech and love to share our knowledge with others. We believe that technology should be accessible to everyone, and we’re here to make sure it is. Our mission is to provide you with fun, engaging, and informative content that helps you to understand and embrace the latest technologies.

From the newest cars on the road to the latest drones taking to the skies, we’ve got you covered. We also dive deep into the world of software and hardware, bringing you the latest updates on everything from operating systems to processors.

So whether you’re a tech enthusiast, a business professional, or just someone who wants to stay up-to-date on the latest advancements in technology, encircle News is the place for you. Join us on this exciting journey and be a part of shaping the future.

Podcasts

TWiT 1013: Calamari in Crisis – Touching the Sun, Fake Spotify Artists, Banished Words This Week in Tech (Audio)

Touching the Sun, Fake Spotify Artists, Banished Words AI Needs So Much Power, It's Making Yours Worse How many billions Big Tech spent on AI data centers in 2024 NASA Spacecraft 'Touches Sun' In Defining Moment For Humankind Elon Musk Calls Out NASA's Moon Ambitions: 'We're Going Straight to Mars' Elon Musk and the right's war on Wikipedia Trump Asks Supreme Court to Pause Law Threatening TikTok Ban US Treasury says Chinese hackers stole documents in 'major incident' Judge blocks parts of California bid to protect kids from social media Finland probes Russian shadow fleet oil tanker after cable-cutting incident US appeals court blocks Biden administration effort to restore net-neutrality rules The Ghosts in the Machine (fake spotify artists) Massive VW Data Leak Exposed 800,000 EV Owners' Movements, From Homes To Brothels Banished Words | Lake Superior State University 2025 Public Domain Day 2025 Happy Birthday, Bitcoin! The top cryptocurrency is old enough to drive End of the lines? QR-style codes could replace barcodes 'within two years' Host: Leo Laporte Guests: Richard Campbell, Anthony Ha, and Stacey Higginbotham Download or subscribe to This Week in Tech at https://twit.tv/shows/this-week-in-tech Get episodes ad-free with Club TWiT at https://twit.tv/clubtwit Sponsors: ZipRecruiter.com/Twit joindeleteme.com/twit promo code TWIT canary.tools/twit – use code: TWIT zscaler.com/security
  1. TWiT 1013: Calamari in Crisis – Touching the Sun, Fake Spotify Artists, Banished Words
  2. TWiT 1012: Our Best Of 2024 – The Best Moments From TWiT's 2024
  3. TWiT 1011: The Year in Review – A Look at the Top Stories of 2024
  4. TWiT 1010: The Densest State in the US – TikTok Ban, Drones Over Jersey, GM Quits Robotaxis
  5. TWiT 1009: Andy Giveth & Bill Taketh Away – Trump's Tech Titans, Crypto Boom, TikTok's US Ban, Intel CEO Exits