, , , , ,

NASA Rocket to See Sizzling Edge of Star-Forming Supernova

5 min read

NASA Rocket to See Sizzling Edge of Star-Forming Supernova

A new sounding rocket mission is headed to space to understand how explosive stellar deaths lay the groundwork for new star systems. The Integral Field Ultraviolet Spectroscopic Experiment, or INFUSE, sounding rocket mission, will launch from the White Sands Missile Range in New Mexico on Oct. 29, 2023, at 9:35 p.m. MDT.

For a few months each year, the constellation Cygnus (Latin for “swan”) swoops through the northern hemisphere’s night sky. Just above its wing is a favorite target for backyard astronomers and professional scientists alike: the Cygnus Loop, also known as the Veil Nebula.

This image shows an illustration of the constellation Cygnus, Latin for “swan,” in the night sky. The Cygnus Loop supernova remnant, also known as the Veil Nebula, is located near one of the swan’s wings, outlined here in a rectangular box.
NASA

The Cygnus Loop is the remnant of a star that was once 20 times the size of our Sun. Some 20,000 years ago, that star collapsed under its own gravity and erupted into a supernova. Even from 2,600 light-years away, astronomers estimate the flash of light would have been bright enough to see from Earth during the day.

This image taken by NASA’s Hubble Space Telescope shows part of the Veil Nebula or Cygnus Loop. To create this colorful image, observations were taken by Hubble’s Wide Field Camera 3 instrument using five different filters. New post-processing methods have further enhanced details of emissions from doubly ionized oxygen (shown here in shades of blue), ionized hydrogen, and ionized nitrogen (shown here in shades of red).
ESA/Hubble & NASA, Z. Levay

Supernovae are part of a great life cycle. They spray heavy metals forged in a star’s core into the clouds of surrounding dust and gas. They are the source of all chemical elements in our universe heavier than iron, including those that make up our own bodies. From the churned-up clouds and star stuff left in their wake, gases and dust from supernovae gradually clump together to form planets, stars, and new star systems.

“Supernovae like the one that created the Cygnus Loop have a huge impact on how galaxies form,” said Brian Fleming, a research professor at the University of Colorado Boulder and principal investigator for the INFUSE mission.

The Cygnus Loop provides a rare look at a supernova blast still in progress. Already over 120 light-years across, the massive cloud is still expanding today at approximately 930,000 miles per hour (about 1.5 million kilometers per hour).

What our telescopes capture from the Cygnus Loop is not the supernova blast itself. Instead, we see the dust and gas superheated by the shock front, which glows as it cools back down.

“INFUSE will observe how the supernova dumps energy into the Milky Way by catching light given off just as the blast wave crashes into pockets of cold gas floating around the galaxy,” Fleming said.

To see that shock front at its sizzling edge, Fleming and his team have developed a telescope that measures far-ultraviolet light – a kind of light too energetic for our eyes to see. This light reveals gas at temperatures between 90,000 and 540,000 degrees Fahrenheit (about 50,000 to 300,000 degrees Celsius) that is still sizzling after impact.

INFUSE is an integral field spectrograph, the first instrument of its kind to fly to space. The instrument combines the strengths of two ways of studying light: imaging and spectroscopy. Your typical telescopes have cameras that excel at creating images – showing where light is coming from, faithfully revealing its spatial arrangement. But telescopes don’t separate light into different wavelengths or “colors” – instead, all of the different wavelengths overlap one another in the resulting image.

Spectroscopy, on the other hand, takes a single beam of light and separates it into its component wavelengths or spectrum, much as a prism separates light into a rainbow. This procedure reveals all kinds of information about what the light source is made of, its temperature, and how it is moving. But spectroscopy can only look at a single sliver of light at a time. It’s like looking at the night sky through a narrow keyhole.

The INFUSE instrument captures an image and then “slices” it up, lining up the slices into one giant “keyhole.” The spectrometer can then spread each of the slices into its spectrum. This data can be reassembled into a 3-dimensional image that scientists call a “data cube” – like a stack of images where each layer reveals a specific wavelength of light.

PhD student Emily Witt installs the delicate image slicer – the core optical technology for INFUSE – onto its mount in a CU-LASP clean room ahead of integration into the payload.
CU Boulder LASP/Brian Fleming

Using the data from INFUSE, Fleming and his team will not only identify specific elements and their temperatures, but they’ll also see where those different elements lie along the shock front.

“It’s a very exciting project to be a part of,” said lead graduate student Emily Witt, also at CU Boulder, who led most of the assembly and testing of INFUSE and will lead the data analysis. “With these first-of-their-kind measurements, we will better understand how these elements from the supernova mix with the environment around them. It’s a big step toward understanding how material from supernovas becomes part of planets like Earth and even people like us.”

To get to space, the INFUSE payload will fly aboard a sounding rocket. These nimble, crewless rockets launch into space for a few minutes of data collection before falling back to the ground. The INFUSE payload will fly aboard a two-stage Black Brant 9 sounding rocket, aiming for a peak altitude of about 150 miles (240 kilometers), where it will make its observations, before parachuting back to the ground to be recovered. The team hopes to upgrade the instrument and launch again. In fact, parts of the INFUSE rocket are themselves repurposed from the DEUCE mission, which launched from Australia in 2022.

NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility at Wallops Island, Virginia, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency. The development of the INFUSE payload was supported by NASA’s Astrophysics Division.

https://science.nasa.gov/missions/sounding-rockets/nasa-rocket-to-see-sizzling-edge-of-star-forming-supernova/


December 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

About Us

Welcome to encircle News! We are a cutting-edge technology news company that is dedicated to bringing you the latest and greatest in everything tech. From automobiles to drones, software to hardware, we’ve got you covered.

At encircle News, we believe that technology is more than just a tool, it’s a way of life. And we’re here to help you stay on top of all the latest trends and developments in this ever-evolving field. We know that technology is constantly changing, and that can be overwhelming, but we’re here to make it easy for you to keep up.

We’re a team of tech enthusiasts who are passionate about everything tech and love to share our knowledge with others. We believe that technology should be accessible to everyone, and we’re here to make sure it is. Our mission is to provide you with fun, engaging, and informative content that helps you to understand and embrace the latest technologies.

From the newest cars on the road to the latest drones taking to the skies, we’ve got you covered. We also dive deep into the world of software and hardware, bringing you the latest updates on everything from operating systems to processors.

So whether you’re a tech enthusiast, a business professional, or just someone who wants to stay up-to-date on the latest advancements in technology, encircle News is the place for you. Join us on this exciting journey and be a part of shaping the future.

Podcasts

TWiT 1010: The Densest State in the US – TikTok Ban, Drones Over Jersey, GM Quits Robotaxis This Week in Tech (Audio)

So You Want to Solve the NJ Drone Mystery? Our Expert Has Some Ideas Infowars Sale to The Onion Rejected by Federal Bankruptcy Judge Federal appeals court declines to temporarily block ban on TikTok, teeing up showdown at SCOTUS over controversial law WordPress parent company must stop blocking WP Engine, judge rules Crypto's Legacy Is Finally Clear Tech Industry and CEOs Curry Favor With Trump Ahead of His Inauguration AI Is Detecting More Breast Cancer Cases, Study Suggests Huge randomized trial of AI boosts discovery — at least for good scientists GM Calls It Quits on Mary Barra's $50 Billion Robotaxi Dream You Can Buy a Car on Amazon Now Host: Leo Laporte Guests: Cathy Gellis, Mike Elgan, and Emily Forlini Download or subscribe to This Week in Tech at https://twit.tv/shows/this-week-in-tech Get episodes ad-free with Club TWiT at https://twit.tv/clubtwit Sponsors: mintmobile.com/twit shopify.com/twit
  1. TWiT 1010: The Densest State in the US – TikTok Ban, Drones Over Jersey, GM Quits Robotaxis
  2. TWiT 1009: Andy Giveth & Bill Taketh Away – Trump's Tech Titans, Crypto Boom, TikTok's US Ban, Intel CEO Exits
  3. TWiT 1008: Internet Legal – Australia's Social Media Ban for Kids, Smart Home Nightmare, Bluesky's Ascent
  4. TWiT 1007: All the Hotdogs in the World – China's "Salt Typhoon" Hack, Google on the Chopping Block, Recall AI
  5. TWiT 1006: Underwater Alien Civilizations – Bluesky Growth, Tyson Vs. Paul, AI Granny