9 min read

How NASA Chases and Investigates Bright Cosmic Blips

A dying star is shown with two jets emerging from it against a red hazy circle
Astronomers think a long GRB (gamma-ray burst) arises from a massive, rapidly rotating star when its core runs out of fuel and collapses, forming a black hole in the star’s center. In this artist’s concept, two jets emerge from the dying star and interact with surrounding gas and dust.
NASA’s Goddard Space Flight Center Conceptual Image Lab

Stephen Lesage’s phone started vibrating just after halftime on Oct. 9, 2022, while he was watching a soccer game in Atlanta with a friend. When Lesage saw the incoming messages, the match no longer seemed important. There had been a rare cosmic event, and he needed to get to his computer immediately.

NASA’s Fermi Gamma-Ray Satellite and Neil Gehrels Swift Observatory had spotted an unusually bright signal in space, and sent automatic alerts to scientists. Lesage’s team’s Fermi chat channel lit up with messages as scientists coordinated their follow-up strategy.

“Everyone in that group was like, ‘this thing’s crazy! Who’s on duty to analyze this? This is what we’ve been waiting for,’” Lesage, a graduate student at the University of Alabama, Huntsville, recalled. “Time to go!”

The unusual event turned to be a cosmic burst that may have been the brightest at X-ray and gamma-ray energies since civilization began. Astronomers dubbed it the BOAT, “the brightest of all time.” Lesage led an analysis of Fermi data that demonstrated just how bright the BOAT really was. More than 150 telescopes in space and on Earth followed up to get more details of the event including NASA’s IXPE (Imaging X-ray Polarimetry Explorer ), Hubble Space Telescope, and James Webb Space Telescope, as well as the European Space Agency’s XMM-Newton telescope.

The Universe is Changing

The BOAT is an example of what astronomers call Time-Domain and Multimessenger Astronomy. The “Time Domain” part refers to events that happen in the universe that telescopes can observe as they unfold, such as a supernova or the merger of two neutron stars. “Multimessenger Astronomy” refers to the variety of “messengers” that deliver information from the universe, including all forms of light, high-energy particles, and ripples in spacetime called gravitational waves.

While the universe may seem like it changes extremely slowly, over millions or even billions of years, its celestial occupants do sometimes produce dramatic changes on the order of days or even fractions of seconds. Galactic centers brighten as their central black holes eat material. Black holes siphon plasma from nearby stars. Stars explode. Neutron stars collide with black holes, neutron stars collide with neutron stars, and black holes merge with black holes. Even distant crashes of celestial objects can send powerful ripples that can be detected by space- and ground-based telescopes and instruments. Many of these phenomena are unpredictable in terms of both where and when they might happen next.

NASA has two “watchdog” satellites with wide fields of view that send out alerts when they detect a sudden brightening of gamma rays: Fermi and Swift. Fermi’s Gamma-Ray Burst Monitor and Large Area Telescope, and Swift’s Burst Alert Telescope, are key instruments that might be the first to observe these events.

“When something impulsive happens, when something goes boom and explodes or something goes crunch and collapses, they trigger,” said Valerie Connaughton, who leads the high-energy astrophysics portfolio and the Time-Domain and Multimessenger Astronomy Initiative within the Astrophysics Division at NASA Headquarters in Washington.

Once scientists receive an alert on their computers and phones, they may be able to collaborate with other telescopes to follow up on the event. By using a variety of different space-based observatories and instruments to study these largely unpredictable flashes, scientists can piece together what, where, when, and why they observed a “blip” in the usual calm of space.

After comparing observations of the BOAT from numerous telescopes, scientists determined that this unusually bright burst came from a supernova and specifically, the core collapse of a massive star rotating rapidly. Later, with data from NASA’s NuSTAR mission, scientists found that the jet of material shooting out from the exploding star had a more complicated shape than they originally thought.

A giant star just exploded, and we get to study it and figure out what happened, and reverse engineer the pieces and put it back together,” Lesage said.

Time-domain astronomy lets us get fundamental answers on the properties of the universe, of fundamental physics itself, and the origin of the elements.”

ERIC BURNS

ERIC BURNS

Astrophysicist, Louisiana State University

New Bright Signals

Just five months after the BOAT, scientists received an alert from Fermi about the second-brightest gamma-ray burst seen in the last 50 years. This newer signal, GRB 230307A, which happened in March 2023, joined the BOAT in the category of “long” gamma-ray bursts, lasting 200 seconds, compared to 600 for the BOAT. Thanks to infrared data from NASA’s James Webb Space Telescope, scientists determined that GRB 230307A may have had a very different origin: the merger of two neutron stars about a billion light-years away from Earth. What’s more, Webb detected the rare element tellurium, suggesting that neutron star mergers create heavy elements like this.

This result still puzzles astronomers such as Eric Burns, a co-author of the GRB 230307A paper and member of the Fermi team at Louisiana State University. Merging neutron stars shouldn’t produce such long gamma-ray bursts, and current models of atomic physics do not entirely explain the mid-infrared wavelengths that Webb detected. He hopes Webb will help us learn more about these kinds of events in the next few years.

“Time-domain astronomy lets us get fundamental answers on the properties of the universe, of fundamental physics itself, and the origin of the elements,” Burns said.

Bright galaxies and other light sources in various sizes and shapes are scattered across a black swath of space: small points, hazy elliptical-like smudges with halos, and spiral-shaped blobs. The objects vary in color: white, blue-white, yellow-white, and orange-red. Toward the center right is a blue-white spiral galaxy seen face-on that is larger than the other light sources in the image. The galaxy is labeled “former home galaxy.” Toward the upper left is a small red point, which has a white circle around it and is labeled “GRB 230307A kilonova.”
This image from NASA’s James Webb Space Telescope NIRCam (Near-Infrared Camera) instrument highlights Gamma-Ray Burst (GRB) 230307A and its associated kilonova, as well as its former home galaxy, among their local environment of other galaxies and foreground stars. The GRB likely was powered by the merger of two neutron stars. The neutron stars were kicked out of their home galaxy and traveled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.
NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick)

A Multitude of Messengers

Cosmic “messengers” associated with fleeting cosmic blips also help scientists reconstruct their origins. The initial 2015 discovery of gravitational waves by LIGO, the Laser Interferometer Gravitational-Wave Observatory, showed that the universe could be observed in a brand new way, and began a new era of possibility for using multiple messengers to study sudden blips in the universe.

In 2017, scientists demonstrated that potential by combining gravitational wave observations with data from many different ground and space-based observatories to study a kilonova, or neutron star merger, called GW170817. Among the insights from the extensive study of this kilonova, Burns and colleagues used it to make the first precise measurement of the speed of gravity, “the last major confirmation of a prediction from Einstein,” he said.  

Today, the network of the U.S. NSF (National Science Foundation)-supported LIGO, Europe’s VIRGO, and Japan’s KAGRA looks out for gravitational wave events.

When this animation opens, there are concentric rings of pale blue the expand away and off the screen. At the center is a bright ball of light with two narrow cones of orange, fiery-looking material extend in opposing directions, tilted just to the right. During the first few seconds, there are magenta flashes of light that seem to be pushed along with the ends of the orange cones. The central ball expands into a puffy, electric blue cloud. The sequence represents the events that happened after two neutron stars merged, exploding in a gamma-ray burst.
This animation captures phenomena observed over the course of nine days following the neutron star merger known as GW170817, detected on Aug. 17, 2017. They include gravitational waves (pale arcs), a near-light-speed jet that produced gamma rays (magenta), expanding debris from a kilonova that produced ultraviolet (violet), optical and infrared (blue-white to red) emission, and, once the jet directed toward us expanded into our view from Earth, X-rays (blue).
NASA’s Goddard Space Flight Center/Conceptual Image Lab

Light is the only kind of “messenger” from the universe that has been detected for both the BOAT and the gamma-ray burst that seems to have produced tellurium. An experiment near the South Pole called IceCube, supported by the NSF, looked for high-energy neutrinos coming from the same area of the sky as each event, but did not find any. However, the lack of neutrinos observed helps scientists constrain the possibilities for how these events unfolded.

“This multimessenger approach is important, even when you don’t have a detection,” said Michela Negro, astrophysicist and assistant professor at Louisiana State University. “It really helps rule out some scenarios, on top of telling us something new when we have detections.”

A Bright Future

For Lesage, who is writing his dissertation about the BOAT, time-domain and multimessenger astronomy is an exciting area of study. The BOAT itself is still keeping him and other astronomers busy as they look at all of the processes revealed by the exceptionally bright light from this extreme event. But more transient events are sure to come, and will keep scientists on their toes as they chase after them with a wide variety of telescopes and instruments.

“That’s just transient events — look now or you’re going to miss it,” Lesage said. “Look as quickly as you possibly can.”

This animation shows what happened in the nine days after a neutron star merger detected in 2017. First, a pair of glowing blue neutron stars spiral quickly toward each other, merging with a bright flash. The merger creates gravitational waves (shown as pale arcs rippling outward), a near-light-speed jet that produced gamma rays (shown as brown cones and a rapidly traveling magenta glow erupting from the center of the collision), and a donut-shaped ring of expanding blue debris around the center of the explosion. A variety of colors represent the wavelengths of light produced by the kilonova, creating violet to blue-white to red bursts above and below the collision.
Doomed neutron stars whirl toward their demise in this illustration. Gravitational waves bleed away orbital energy, causing the stars to move closer together and merge. As they collide, some of the debris blasts away in particle jets moving at nearly the speed of light, producing a brief burst of gamma rays.
NASA’s Goddard Space Flight Center/Conceptual Image Lab

Further Reading: Telescopes on the Case

In the next few years NASA will be launching new “watcher” satellites to help look out for sudden transient events like these. They include several CubeSats, which are a class of miniaturized spacecraft built in standardized units of cubes around 4 inches (10 cm) on a side:

  • BurstCube, launching in March 2024, to monitor gamma-ray signals
  • BlackCat, launching in 2025, to detect X-ray light
  • Starburst, launching in 2027, to monitor gamma-ray signals

International partnerships also involve this kind of science:

  • ULTRASAT (Ultraviolet Transient Astronomy Satellite), a small satellite from the Israeli Space Agency and the the Weizmann Institute of Science, with a wide field of view specializing in ultraviolet light, has NASA contributions. Expected to launch in 2026.
  • ESA’s LISA (Laser Interferometer Space Antenna) mission, which would be the first time that gravitational waves could be detected from space, has NASA contributions. Expected to launch in the 2030s.

Additionally, NASA telescopes with other primary goals can help look out for these unusual events:

  • Psyche, on its way to the metal-rich asteroid Psyche, has a gamma-ray spectrometer that astronomers can use to detect gamma-ray bursts as the spacecraft cruises toward its destination over the next several years.
  • WISE, which mapped the sky at infrared wavelengths, found many new distant objects and cosmic phenomena.  The NEOWISE mission, which reuses the WISE telescope, surveys near-Earth space for potentially hazardous asteroids.
  • NASA’s Nancy Grace Roman Space Telescope, an infrared observatory that will illuminate longstanding mysteries of dark energy and discover thousands of exoplanets, is designed to have a wide view of the sky and will undoubtedly pick up on transient infrared signals. The observatory will do several surveys to look for these phenomena, and the mission will support many teams to study relevant topics ranging from variable stars, the birth of black holes and active galaxies. Roman is scheduled to launch by May 2027, and will also provide alerts about the changes in the sky it discovers. 
  • The NEO Surveyor mission will use infrared detectors to broaden the search for asteroids and comets that may pose a hazard to the Earth.  The images to be taken by NEO Surveyor also are expected to capture many more distant background objects.

https://science.nasa.gov/directorates/smd/astrophysics-division/how-nasa-chases-and-investigates-bright-cosmic-blips/


Featured Posts

December 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

About Us

Welcome to encircle News! We are a cutting-edge technology news company that is dedicated to bringing you the latest and greatest in everything tech. From automobiles to drones, software to hardware, we’ve got you covered.

At encircle News, we believe that technology is more than just a tool, it’s a way of life. And we’re here to help you stay on top of all the latest trends and developments in this ever-evolving field. We know that technology is constantly changing, and that can be overwhelming, but we’re here to make it easy for you to keep up.

We’re a team of tech enthusiasts who are passionate about everything tech and love to share our knowledge with others. We believe that technology should be accessible to everyone, and we’re here to make sure it is. Our mission is to provide you with fun, engaging, and informative content that helps you to understand and embrace the latest technologies.

From the newest cars on the road to the latest drones taking to the skies, we’ve got you covered. We also dive deep into the world of software and hardware, bringing you the latest updates on everything from operating systems to processors.

So whether you’re a tech enthusiast, a business professional, or just someone who wants to stay up-to-date on the latest advancements in technology, encircle News is the place for you. Join us on this exciting journey and be a part of shaping the future.

Podcasts

TWiT 1011: The Year in Review – A Look at the Top Stories of 2024 This Week in Tech (Audio)

What's behind the tech industry's mass layoffs in 2024? : NPR Rabbit R1 AI Assistant: Price, Specs, Release Date | WIRED Stealing everything you've ever typed or viewed on your own Windows PC is now possible with two lines of code — inside the Copilot+ Recall disaster. Microsoft delays Recall after security concerns, and asks Windows Insiders for help The Qualcomm Snapdragon X Architecture Deep Dive: Getting To Know Oryon and Adreno X1 Elon Musk: First Human Receives Neuralink Brain Chip Apple hit with €1.8bn fine for breaking EU law over music streaming Bluesky emerges The hidden high cost of return-to-office mandates Apple's Car Was Doomed by Its Lofty Ambitions to Outdo Tesla SpaceX pulls off unprecedented feat, grabs descending rocket with mechanical arms U.S. versus Apple: A first reaction Google Says It Won't Force Gemini on Partners in Antitrust Remedy Proposal U.S. Accuses Chinese Hackers of Targeting Critical Infrastructure in America U.S. Agency Warns Employees About Phone Use Amid Ongoing China Hack AT&T says criminals stole phone records of 'nearly all' customers in new data breach National Public Data confirms breach exposing Social Security numbers Schools Want to Ban Phones. Parents Say No. New York passes legislation that would ban 'addictive' social media algorithms for kids GPT-4o (omni) + new "Her"-style AI assistant (it's nuts) Google emissions jump nearly 50% over five years as AI use surges Trump proposes strategic national crypto stockpile at Bitcoin Conference Ten additional US states join DOJ antitrust lawsuit looking to break up Live Nation and TicketmasterThe Internet Archive just lost its appeal over ebook lending Hezbollah Pagers Explode in Apparent Attack Across Lebanon OpenAI raises $6.6 billion in largest VC round ever Painting by A.I.-Powered Robot Sells for $1.1 Million Netflix's Live Mike Tyson Vs. Jake Paul Fight Battling Sound & Streaming Glitches In Lead-Up To Main Event Infowars Sale to The Onion Rejected by Federal Bankruptcy Judge Supreme Court agrees to hear challenge to TikTok ban So You Want to Solve the NJ Drone Mystery? Our Expert Has Some Ideas Beeper's push for iMessage on Android is really over The Quiet Death of Ello's Big Dreams Japan finally ends mandatory form submission on floppy disks We'll Miss You: Pioneering instant messaging program ICQ is finally shutting down after nearly 30 years Spotify is going to break every Car Thing gadget it ever sold Game Informer to Shut Down After 33 Years In Memoriam Host: Leo Laporte Guests: Fr. Robert Ballecer, SJ, Richard Campbell, and Mikah Sargent Download or subscribe to This Week in Tech at https://twit.tv/shows/this-week-in-tech Get episodes ad-free with Club TWiT at https://twit.tv/clubtwit Sponsor: bitwarden.com/twit
  1. TWiT 1011: The Year in Review – A Look at the Top Stories of 2024
  2. TWiT 1010: The Densest State in the US – TikTok Ban, Drones Over Jersey, GM Quits Robotaxis
  3. TWiT 1009: Andy Giveth & Bill Taketh Away – Trump's Tech Titans, Crypto Boom, TikTok's US Ban, Intel CEO Exits
  4. TWiT 1008: Internet Legal – Australia's Social Media Ban for Kids, Smart Home Nightmare, Bluesky's Ascent
  5. TWiT 1007: All the Hotdogs in the World – China's "Salt Typhoon" Hack, Google on the Chopping Block, Recall AI