On Thursday, the research publisher Science announced that all of its journals will begin using commercial software that automates the process of detecting improperly manipulated images. The move comes many years into our awareness that the transition to digital data and publishing has made it comically easy to commit research fraud by altering images.
While the move is a significant first step, it’s important to recognize the software’s limitations. While it will catch some of the most egregious cases of image manipulation, enterprising fraudsters can easily avoid being caught if they know how the software operates. Which, unfortunately, we feel compelled to describe (and, to be fair, the company that has developed the software does so on its website).
Fantastic fraud and how to catch it
Much of the image-based fraud we’ve seen arises from a dilemma faced by many scientists: It’s not a problem to run experiments, but the data they generate often isn’t the data you want. Maybe only the controls work, or maybe the experiments produce data that is indistinguishable from controls. For the unethical, this doesn’t pose a problem since nobody other than you knows what images come from which samples. It’s relatively simple to present images of real data as something they’re not.
Read 15 remaining paragraphs | Comments