5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

An artist's concept of the Starling swarm. Four small CubeSat spacecraft orbit in linear formation with Earth visible below.
The four CubeSate spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives.

After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations. 

Swarms of satellites may one day be used in deep space exploration. An autonomous network of spacecraft could self-navigate, manage scientific experiments, and execute maneuvers to respond to environmental changes without the burden of significant communications delays between the swarm and Earth. 

“The success of Starling’s initial mission represents a landmark achievement in the development of autonomous networks of small spacecraft,” said Roger Hunter, program manager for NASA’s Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley. “The team has been very successful in achieving our objectives and adapting in the face of challenges.”  

Sharing the Work

The Distributed Spacecraft Autonomy (DSA) experiment, flown onboard Starling, demonstrated the spacecraft swarm’s ability to optimize data collection across the swarm. The CubeSats analyzed Earth’s ionosphere by identifying interesting phenomena and reaching a consensus between each satellite on an approach for analysis.  

By sharing observational work across a swarm, each spacecraft can “share the load” and observe different data or work together to provide deeper analysis, reducing human workload, and keeping the spacecraft working without the need for new commands sent from the ground. 

The experiment’s success means Starling is the first swarm to autonomously distribute information and operations data between spacecraft to generate plans to work more efficiently, and the first demonstration of a fully distributed onboard reasoning system capable of reacting quickly to changes in scientific observations. 

Communicating Across the Swarm

A swarm of spacecraft needs a network to communicate between each other. The Mobile Ad-hoc Network (MANET) experiment automatically established a network in space, allowing the swarm to relay commands and transfer data between one another and the ground, as well as share information about other experiments cooperatively.  

The team successfully completed all the MANET experiment objectives, including demonstrating routing commands and data to one of the spacecraft having trouble with space to ground communications, a valuable benefit of a cooperative spacecraft swarm. 

“The success of MANET demonstrates the robustness of a swarm,” said Howard Cannon, Starling project manager at NASA Ames. “For example, when the radio went down on one swarm spacecraft, we ‘side-loaded’ the spacecraft from another direction, sending commands, software updates, and other vital information to the spacecraft from another swarm member.” 

Autonomous Swarm Navigation 

Navigating and operating in relation to one another and the planet is an important part of forming a swarm of spacecraft. Starling Formation-Flying Optical Experiment, or StarFOX, uses star trackers to recognize a fellow swarm member, other satellite, or space debris from the background field of stars, then estimate each spacecraft’s position and velocity. 

The experiment is the first-ever published demonstration of this type of swarm navigation, including the ability to track multiple members of a swarm simultaneously and the ability to share observations between the spacecraft, improving accuracy when determining each swarm member’s orbit. 

Near the end of mission operations, the swarm was maneuvered into a passive safety ellipse, and in this formation, the StarFOX team was able to achieve a groundbreaking milestone, demonstrating the ability to autonomously estimate the swarm’s orbits using only inter-satellite measurements from the spacecraft star trackers. 

Managing Swarm Maneuvers 

The ability to plan and execute maneuvers with minimal human intervention is an important part of developing larger satellite swarms. Managing the trajectories and maneuvers of hundreds or thousands of spacecraft autonomously saves time and reduces complexity. 

The Reconfiguration and Orbit Maintenance Experiments Onboard (ROMEO) system tests onboard maneuver planning and execution by estimating the spacecraft’s orbit and planning a maneuver to a new desired orbit. 

The experiment team has successfully demonstrated the system’s ability to determine and plan a change in orbit and is working to refine the system to reduce propellant use and demonstrate executing the maneuvers. The team will continue to adapt and develop the system throughout Starling’s mission extension. 

Swarming Together

Now that Starling’s primary mission objectives are complete, the team will embark on a mission extension known as Starling 1.5, testing space traffic coordination in partnership with SpaceX’s Starlink constellation, which also has autonomous maneuvering capabilities. The project will explore how constellations operated by different users can share information through a ground hub to avoid potential collisions.  

“Starling’s partnership with SpaceX is the next step in operating large networks of spacecraft and understanding how two autonomously maneuvering systems can safely operate in proximity to each other. As the number of operational spacecraft increases each year, we must learn how to manage orbital traffic,” said Hunter. 

NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provided launch and integration services. Partners supporting Starling’s payload experiments have included Stanford University’s Space Rendezvous Lab in Stanford, California, York Space Systems (formerly Emergent Space Technologies) of Denver, Colorado, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida. Funding support for the DSA experiment was provided by NASA’s Game Changing Development program within STMD. Partners supporting Starling’s mission extension include SpaceX of Hawthorne, California, NASA’s Conjunction Assessment Risk Analysis (CARA) program, and the Department of Commerce. SpaceX manages the Starlink satellite constellation and the Collision Avoidance ground system.

https://www.nasa.gov/directorates/stmd/swarming-for-success-starling-completes-primary-mission/


December 2024
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

About Us

Welcome to encircle News! We are a cutting-edge technology news company that is dedicated to bringing you the latest and greatest in everything tech. From automobiles to drones, software to hardware, we’ve got you covered.

At encircle News, we believe that technology is more than just a tool, it’s a way of life. And we’re here to help you stay on top of all the latest trends and developments in this ever-evolving field. We know that technology is constantly changing, and that can be overwhelming, but we’re here to make it easy for you to keep up.

We’re a team of tech enthusiasts who are passionate about everything tech and love to share our knowledge with others. We believe that technology should be accessible to everyone, and we’re here to make sure it is. Our mission is to provide you with fun, engaging, and informative content that helps you to understand and embrace the latest technologies.

From the newest cars on the road to the latest drones taking to the skies, we’ve got you covered. We also dive deep into the world of software and hardware, bringing you the latest updates on everything from operating systems to processors.

So whether you’re a tech enthusiast, a business professional, or just someone who wants to stay up-to-date on the latest advancements in technology, encircle News is the place for you. Join us on this exciting journey and be a part of shaping the future.

Podcasts

TWiT 1008: Internet Legal – Australia's Social Media Ban for Kids, Smart Home Nightmare, Bluesky's Ascent This Week in Tech (Audio)

In this week's episode of This Week in Tech, Leo Laporte and guests Devindra Hardawar, Doc Rock, and Jennifer Pattison Tuohy discuss a wide range of topics including Australia's ban on social media for under 16s, the latest in smart home technology and Matter protocol, CES 2024 expectations, Black Friday sales records, Elon Musk's legal battles, the FTC's efforts to protect consumers, and the growing threat of infrastructure sabotage. The panel also touches on the lifespan of smart devices, the ownership of social media accounts, and the growth of Bluesky. Australia bans social media for everyone under 16, sparking a discussion on the challenges of age verification, the necessity of such measures, and the potential impact on children's social lives Jennifer shares her thoughts on the progress and challenges of Matter protocol, the future of smart home technology, and the killer use cases like energy management that could drive broader adoption Devindra looks forward to checking out the latest tech at CES 2024, while the panel discusses the impact of potential tariffs on consumer electronics prices Black Friday online sales hit a record $74.4B, up 5% from last year, with over half of spending done on mobile devices and a surge in traffic to retail sites from AI chatbots Elon Musk files for an injunction to halt OpenAI's transition to a for-profit, accusing the company of discouraging investors from backing rivals like his own xAI Musk admits X is throttling links, effectively limiting people from reading news on the platform, which could impact content creators and marketers The panel discusses the implications of X's objection to The Onion buying InfoWars, reminding users that they do not own their social media accounts or followers As alternative social media platforms like Bluesky gain traction, the panel considers the challenges of managing multiple platforms and the potential for a more decentralized social media landscape The FTC releases a report on the hidden lifespan of smart devices, highlighting the need for transparency and the potential security risks of unsupported devices FTC changes its telemarketing rules to better protect consumers from growing 'tech support scam' calls Supreme Court considers whether ISPs should be liable for users' piracy, with potential far-reaching consequences Concerns rise over infrastructure sabotage as a Chinese ship's crew is suspected of deliberately dragging an anchor for 100 miles to cut Baltic cables Meta plans to build a $10B subsea cable spanning the world to support its services and ensure data traffic flow Host: Leo Laporte Guests: Jennifer Pattison Tuohy, Doc Rock, and Devindra Hardawar Download or subscribe to This Week in Tech at https://twit.tv/shows/this-week-in-tech Get episodes ad-free with Club TWiT at https://twit.tv/clubtwit Sponsors: NetSuite.com/TWIT bitwarden.com/twit e-e.com/twit INFO.ACILEARNING.COM/TWIT – code TWIT100
  1. TWiT 1008: Internet Legal – Australia's Social Media Ban for Kids, Smart Home Nightmare, Bluesky's Ascent
  2. TWiT 1007: All the Hotdogs in the World – China's "Salt Typhoon" Hack, Google on the Chopping Block, Recall AI
  3. TWiT 1006: Underwater Alien Civilizations – Bluesky Growth, Tyson Vs. Paul, AI Granny
  4. TWiT 1005: $125,000 in Baguettes – iPod Turns 23, The $1.1M AI Painting, Roblox
  5. TWiT 1004: Embrace Uncertainty – Political Texts, Daylight Saving Time, Digital Ad Market